
Reducing Data Movement Costs using Energy-Efficient,
Active Computation on SSD

Devesh Tiwari 1∗, Sudharshan S. Vazhkudai 2, Youngjae Kim 2, Xiaosong Ma 1,2, Simona Boboila 3, and
Peter J. Desnoyers 3

1North Carolina State University, 2Oak Ridge National Laboratory, 3Northeastern University
{devesh.dtiwari, ma}@ncsu.edu, {vazhkudaiss, kimy1}@ornl.gov, {simona, pjd}@ccs.neu.edu

ABSTRACT
Modern scientific discovery often involves running complex appli-
cation simulations on supercomputers, followed by a sequence of
data analysis tasks on smaller clusters. This offline approach suf-
fers from significant data movement costs such as redundant I/O,
storage bandwidth bottleneck, and wasted CPU cycles, all of which
contribute to increased energy consumption and delayed end-to-
end performance. Technology projections for an exascale machine
indicate that energy-efficiency will become the primary design met-
ric. It is estimated that the energy cost of data movement will soon
rival the cost of computation. Consequently, we can no longer ig-
nore the data movement costs in data analysis.

To address these challenges, we advocate executing data anal-
ysis tasks on emerging storage devices, such as SSDs. Typically,
in extreme-scale systems, SSDs serve only as a temporary storage
system for the simulation output data. In our approach, Active
Flash, we propose to conduct in-situ data analysis on the SSD con-
troller without degrading the performance of the simulation job. By
migrating analysis tasks closer to where the data resides, it helps
reduce the data movement cost. We present detailed energy and
performance models for both active flash and offline strategies, and
study them using extreme-scale application simulations, commonly
used data analytics kernels, and supercomputer system configura-
tions. Our evaluation suggests that active flash is a promising ap-
proach to alleviate the storage bandwidth bottleneck, reduce the
data movement cost, and improve the overall energy efficiency.

1 Introduction
High performance computing (HPC) simulations on large-scale su-
percomputers (e.g., the petascale Jaguar machine, No. 6 on the
Top500 list [19]) routinely produce vast amounts of result output
and checkpoint data [1, 7]. Examples of such applications include
astrophysics (Chimera and Vulcan/2D), climate (POP), combustion
(S3D), and fusion (GTC and GYRO) (Table 1.) Deriving insights
from these simulation results, towards scientific discovery, often
involves performing a sequence of data analysis operations.

Application Analysis data genera-
tion rate (per node)

Checkpoint data gener-
ation rate (per node)

CHIMERA 4400 KB/s 4400 KB/s
VULCUN/2D 2.28 KB/s 0.02 KB/s
POP 16.3 KB/s 5.05 KB/s
S3D 170 KB/s 85 KB/s
GTC 14 KB/s 476 KB/s
GYRO 14 KB/s 11.6 KB/s

Table 1: Output characteristics of leadership-class parallel simula-
tions, amortized over the entire run. These are calculated based on
ORNL Jaguar reports [1, 7].

Traditionally, the simulation jobs and data analyses of the sim-
ulation outputs are conducted on different computing resources.
Data analysis tasks are run Offline, on smaller clusters, after the
∗This work was performed while the author was at Oak Ridge Na-
tional Lab on a summer internship.

	 Compute Simulation Nodes

Offline Data
Analysis Nodes Parallel

file system

	

Subset of compute
nodes with SSDs

Compute Simulation Nodes

(a) (b)
Figure 1: (a) Offline approach to data analysis (b) Data analysis using
Active Flash
completion of the simulation job (Figure 1(a).) The high-end
computing (HEC) machine and the analysis clusters tend to share
a high-speed scratch parallel file system (PFS) to read/write in-
put/output data. For example, the machine-room at Oak Ridge Na-
tional Lab (ORNL) hosts several data analysis clusters that share
a PFS with the Jaguar machine. The reason for using offline clus-
ters for data analysis is that CPU hours are expensive on HEC ma-
chines like Jaguar. Therefore, HPC users generally utilize the al-
located CPU hours on HEC machines for highly FLOP-intensive
codes such as the simulation job, instead of data analysis tasks.

Unfortunately, this traditional offline approach suffers from both
performance and energy inefficiencies. It requires redundant I/O,
resulting in excessive data movement across the compute and stor-
age subsystems, which delays the process of scientific discovery.
As we transition from petaflop to exaflop systems, the energy cost
due to data movement will be comparable, if not more than the
computing cost [2]. At the same time, technology projections in-
dicate that energy efficiency will become the primary metric for
system design since we need to increase the computing power by
1000x with only 10x increase in the power envelope [17]. There-
fore, a key problem to solve is how to expedite the data analysis
process in an energy-efficient manner, without degrading or inter-
fering with the main simulation computation.

One promising alternative is to perform “in-situ” data analy-
sis [15] on in-transit output data, before it is written to the PFS.
Although this eliminates redundant I/O, it uses expensive compute
nodes on HEC machines for the relatively less FLOP-intensive data
analysis tasks. Moreover, it may even slowdown the simulation job
due to interference from data analysis tasks, resulting in potentially
inefficient use of expensive resources.

Although ”in-situ” data analysis is promising, using HEC nodes
for data analysis results in an inefficient utilization of these re-
sources. We observe that emerging storage devices such as Solid-
state devices (SSD) have significant computing power on the stor-
age controllers [8]. Fortunately, SSDs are being deployed on large-
scale machines such as Tsubame2 [19] and Gordon [16] due to their
higher I/O throughput, and are likely to be an integral part of the
storage subsystem in next-generation supercomputers. Therefore,
we propose to exploit the compute power in SSDs, for in-situ data
analysis, which we call Active Flash. The active flash approach
also has the potential to enable energy-efficient data analysis as
the SSDs are equipped with low-power, ARM-based, multi-core

1

controllers. Additionally, computation near the storage reduces the
data movement cost, resulting in energy savings.

Figure 1(b) depicts the active flash approach, where data process-
ing is conducted on the collective SSD space, which forms a stag-
ing area. Such a staging area on HPC machines will be primarily
used as a burst buffer, to temporarily hold the output and check-
point data, before draining them to the PFS. Simulation output data
is composed of analysis data and checkpoint data. Analysis data
is the input to post-processing, and data analytics kernels. On the
other hand, checkpoint data essentially saves the system state of the
simulation at periodic intervals, so that the application can recover
from failures, to a previous stable state.

The active flash approach shares the same design philosophy be-
hind active disks [14, 10], which had several technological trends
against it. For example, the storage bandwidth bottleneck and
the data movement costs are a bigger concern in the current post-
petascale era when compared to the gigascale era during active
disks. These factors, coupled with SSD’s superior capabilities,
make a strong case for active flash .

In this paper, we present detailed energy consumption and per-
formance models for the offline and active flash cases. Our model
investigates (1) under what conditions is it feasible to offload data
analytics on to the SSD controllers, and (2) when is it more energy-
efficient to place data analysis on the SSD, without degrading or
interfering with the simulation job. We show that active flash can
execute many popular data analytics kernels in the background,
without degrading simulation performance. In addition, it improves
energy-efficiency and accelerates scientific discovery, compared to
the offline approach. We analyze the performance/energy trade-
offs of both approaches, using data rates of several leadership HPC
applications, different classes of data analysis kernels, and real-
istic system parameters from the production Jaguar machine. It
should be noted that SSDs will not be deployed on future HPC ma-
chines specifically for in-situ data analysis, but instead to alleviate
the pressure on storage and memory subsystems. However, by pro-
viding a mechanism to piggyback computation on the SSD, we ar-
gue that the active flash approach reduces the energy consumption
involved in data movement, for the HPC center at-large. Another
important point to note is that performing active computation on
the idle SSD controller is not the same as buying low-power proces-
sors. The reason is two fold. First, SSD controllers themeselves are
similar to contemporary low-power cores, so we do not need to buy
new ones. Instead we need to be able to exploit the SSD controller
while it is idle. Second, active computation on the controller also
mitigates redundant I/O, unlike processing on low-power cores.

In our prior work [11], we had introduced active flash , and an-
alyzed the tradeoffs in performing some tasks on node-local SSD.
Kim et al. [12] presented initial results and experience for perform-
ing scanning operations on the SSD controller for a single node
case. In contrast, we evaluate and model the active computation
paradigm on SSDs in an extreme-scale computing environment
for a class of high-end simulation jobs and data analysis kernels.
Also, in contrast to previous work, we are unique in considering the
case where data is flowing from the compute nodes to the storage
system, and hence the active computation needs to be completed
within a certain duration to avoid slowing down the data producer.

2 Performance and Energy Model for Data
Analysis

In this section, we estimate the energy consumption for the of-
fline and active flash data analysis approaches. We first determine
a realistic ratio between the compute nodes and the SSDs, based on
capacity and bandwidth constraints, major factors considered while

!

!"!#$%&'()$*+,-./$
"..'/$$

!

%&'()$0)12$
0-34.-&&+.($

5367)12$#8"*$

$
9&4167-.+$"8$:'(+;$<<#$

0-34.-&&+.$
9&4167-.+$"8$:'(+;$<<#$

0-34.-&&+.$
9&4167-.+$"8$:'(+;$

=,:+;;+;$0>?$

<8"*$

$#8"*$0-34.-&&+.$

@
-(
4$A
34
+.
B'
7+
$0
-3

4.
-&
&+
.$

<<#$0-34.-&&+.$

Figure 2: Detailed view of the SSD controller
deploying SSD’s in HPC environments. Our goal is to piggyback
the active computation of the analysis data on to the SSD controller,
while it is on the SSD-based staging area. Based on the actual ra-
tios, derived from real application data rates, as well as the analysis
operation’s throughput on the SSD controller, we assess the energy
savings due to in-situ data analysis on such devices.
Performance Feasibility of Active Flash: First, we develop an an-
alytical model to examine the feasibility of active flash, by assess-
ing the aggregate processing power from distributed SSD devices.
This is based on the realistic assumption that SSDs are likely to
be deployed on only a subset of the compute nodes on large ma-
chines. Given the enormous size of state-of-the-art supercomput-
ers,1 it may not be cost-effective to deploy SSDs on each and every
compute node. Therefore, we first calculate how many SSDs need
to be provisioned for the staging area, to accommodate the peak
output data volume at any given point, considering the data gener-
ation and consumption (both analytics and I/O) speeds.

The total SSD storage requirement is determined by the follow-
ing factors: (1) the per-compute-node data production rate for both
analysis data and checkpoint data, denoted as λa and λc respec-
tively, (2) the length of an output iteration (the time between two
periodic output operations), titer , (3) the total number of compute
nodes in the system, N , and (4) the number of checkpoints one
would like to keep in the staging area, numchkpts.

Taking into account a certain over-provisioning factor, fop, for
the SSD space, the total SSD storage requirement at any given
time can be estimated as fop · (λa + numchkpts · λc) · N · titer .
Therefore, the number of SSDs can be estimated as the total SSD
storage requirement divided by the capacity of one SSD, CSSD .
Consequently, the maximum staging ratio (the maximum number
of compute nodes sharing one SSD device) based on the capacity
requirement can be calculated as:

Scapacity =
CSSD

fop · (λa + numchkpts · λc) · titer
(1)

The SSD drive itself will be chosen based on many factors such as
IOPS/$, GB/$, BW/$, write-endurance, and CSSD .
Scapacity describes the static space constraint. However, the

shared SSD store needs to simultaneously satisfy an I/O bandwidth
constraint: bandwidth to the SSD storage cannot be lower than the
PFS bandwidth. Let us suppose the host-to-SSD interface band-
width is BWhost2ssd. Then, the maximum staging ratio should be:

Sbandwidth =
N

BWPFS
·BWhost2ssd (2)

Therefore, considering both the capacity and bandwidth con-
straints, the final staging ratio is determined as follows:

S = min(Scapacity, Sbandwidth) (3)
1E.g., Sequoia at LLNL, No. 1 on Top500, has 98,304 compute
nodes, while an exaflop machine is expected to have a million [17].

2

Given an SSD deployment plan based on the staging ratio (de-
rived as above) and a simulation application, we would like to de-
cide which data analytics kernels can be offloaded to SSDs, without
delaying the main simulation computation.

Note that only the analysis data from the HPC simulation needs
to processed by the SSD controller and not the checkpoint data.
This processing involves transferring the data from the flash mem-
ory to the flash chip controller at the SSD internal bandwidth
BWfm2c, plus transferring from the flash chip controller to the on-
device DRAM at bandwidth, BWc2m (refer to Fig. 2 for a detailed
view of the SSD controller.) We use TSSD k to denote the data
processing throughput of a single active flash device, running the
data analysis kernel, k. Certain data analytics kernels (e.g., com-
pression) may even reduce the analysis data by some factor α. The
SSD is responsible for writing the analysis data (possibly reduced)
and checkpoint data to the PFS (with an appropriate share of the
aggregate file system bandwidth BWPFS). This way, we have the
processing plus output time for data generated within unit time:

ta = λa(
1

BWfm2c
+

1

BWc2m
+

1

TSSD k
+

α
S
N

·BWPFS

) (4)

and checkpoint data output time

tc =
λc

S
N

·BWPFS

(5)

Although the draining of the staged checkpoint data to the PFS
can be overlapped with the processing of the analysis data, we con-
servatively assume that the processing and the final draining of the
analysis data are carried out on the same SSD controller core, im-
plying that the checkpoint data draining and data analytics happen
sequentially. Also, the result of analysis needs to be stored or visu-
alized in-situ as well. However, for simplicity we assume that the
result of data analysis is much smaller than the output data itself
(i.e. α cannot be larger than one.)

For the active flash approach to be feasible, the device needs
to process/output the data from the S nodes before the next I/O
iteration, i.e., consuming data at a rate faster than its generation:

(ta + tc) · S<1 (6)

Solving inequality 6, we obtain the minimum throughput required
for the analytics kernels that can be placed on the flash device:

TSSD k >
λa · S

1− λa · S · (1
BWfm2c

+ 1
BWc2m

)− N·(α·λa+λc)
BWPFS

(7)
Later in Section 4, we use it to evaluate the performance feasibil-

ity of active flash for a set of representative large-scale applications
and data analytics kernels.
Energy Model for Active Flash: In our model, we account for the
energy consumed by all SSDs in the staging area, for the entire du-
ration of the application run. It is the sum of the energy consumed
by the SSDs during (1) busy time: transferring data from com-
pute nodes to the SSD (Enode2ssd), processing the analysis data
(Eactivessd), and transferring the data to the PFS (Essd2pfs), and
(2) idle time (Eidlessd).

Let PSSDbusy and PSSDidle be the SSD busy and idle power level, re-
spectively, and tsim be the total simulation computation time in an
application run. Enode2ssd can be derived by considering the total
time taken to transfer the data from the compute nodes to some SSD
in the staging area as: S·(λa+λc)

BWhost2ssd
, where BWhost2ssd is the host

to SSD interface bandwidth. Since there are a total of N
S

SSDs, the
total energy cost for the data transfer can be expressed as follows:

Enode2ssd = PSSDbusy · N · (λa + λc)

BWhost2ssd
· tsim (8)

Similarly, the energy consumed by the data analysis is:

Eactivessd = PSSDbusy ·N ·λa·(
1

BWfm2c
+

1

BWc2m
+

1

TSSD k
)·tsim

(9)
After data analysis tasks, both checkpoint and analysis data are

written to the PFS by N
S

SSDs. Each SSD writes S · (α · λa + λc)

amount of data at a bandwidth of S ·BWPFS/N . This amounts to
the following energy cost:

Essd2pfs = PSSDbusy ·
N2 · (α · λa + λc)

S ·BWPFS
· tsim (10)

Finally, the idle energy consumption can be calculated using the
estimated total idle time, utilizing the busy time estimate above:

Eidlessd = PSSDidle · (
N

S
· tsim −

Eactivessd + Essd2pfs

PSSDbusy

) (11)

Note that the busy time involved in Enode2ssd is not subtracted
in the equation above, unlike the other two components. This is be-
cause both CPUs and SSDs are involved in the data transfer, which
is not a part of tsim, and does not perform data generation.

Interestingly, a faster I/O bandwidth to the SSD may help reduce
the I/O time at the compute nodes (currently the primary motivation
to deploy SSDs in HPC systems), since cores in a compute node are
idle during I/O activities. Consequently, a reduced I/O time lowers
the idle time at the compute nodes.

We estimate the per-node idle time reduction as Tiosaving =
N·(λa+λc)
BWPFS

− S·(λa+λc)
BWSSD

. Therefore, the energy savings at all com-
pute nodes due to this can be written as:

Eiosaving = N · Tiosaving · P serveridle (12)

After taking into account all of the components, energy con-
sumption at all SSDs can be expressed as follows:

ESSD = Enode2ssd + Eactivessd + Essd2pfs

+Eidlessd − Eiosaving
(13)

Performance and Energy Modeling for Offline Processing:
With the offline approach, compute nodes on the analysis cluster
need to read only the analysis data and write the potentially re-
duced (by a factor of α) analysis data according to their share of
the whole data, i.e., N·λa

M
, assuming M nodes are used to perform

offline analysis. Similarly, each of theM nodes need to process the
data at the processing rate, Tserverk , for a given kernel k . Again we
assume that each node gets the appropriate share of the PFS band-
width 1

N
· BWPFS . The following equation captures the runtime

of the offline analysis:

T imeoffline = (1 + α) ·
N·λa
M

1
N

·BWPFS

+
N · λa

M · Tserverk
(14)

In some cases, analysis data is transferred over the wide area
network for analysis, resulting in more performance and energy
penalty than what our optimistic model estimates.

Next, we model the energy cost of offline processing. To be op-
timistic about the offline approach, we charge only idle power for
the compute servers while they read and write the analysis data,
and account for busy power during the data analysis. We can ob-
tain this by multiplying the Equation 14 by P serveridle for the reading
and writing part of the process, and multiplying by P serverbusy for the
analysis part of the process. Also, since Equation 14 represents the
runtime of the whole offline analysis process, we have to multiply
the equation by P to get the total energy.
The energy cost of offline processing does not depend on the num-
ber of offline nodes; it only depends on the total amount of data to
be read and processed. This can be expressed as follows:

3

No. of compute nodes (N) 18,000
PFS bandwidth (BWPFS) 240GB/s
Output frequency (titer) 1 hour
Simulation duration (tsim) 24 Hours
Overprovisioning factor (fop) 1.50
Data reduction factor (α) 1 (no reduction)
SSD model Samsung PM830
BWhost2ssd 750MB/s [12]
BWfm2c 320MB/s [12]
BWc2m 3.2GB/s [6]
SSD busy power (PSSDbusy) 3W [8]
SSD idle power (PSSDidle) .09W [8]
Offline compute node model 2 Quad-core Intel Q6600 [5]

Table 2: Parameters for performance and energy models.

Data Analytics Kernels ARM-Cortex
A9

Intel Q6600
server

Statistics (mean) 416 MB/s 17.7 GB/s
Pattern Matching (grep) 123 MB/s 4.34 GB/s
Data formatting (transpose) 76 MB/s 1.95 GB/s
Dim. reduction (PCA) 10.2 MB/s 80 MB/s
Compression (gzip) 4.1 MB/s 216 MB/s
Dedup. (Rabin fingerprint) 1.81 MB/s 106 MB/s
Clustering (k-means) 0.91 MB/s 13.7 MB/s

Table 3: Processing throughput of common data analytics kernels on
different devices. Our offline compute node consists of two Intel Q6600
Quad-core machines.

Energyoffline = P serveridle · (1 + α) · N
2 · λa · tsim
BWPFS

+ P serverbusy · N · λa · tsim
Tserverk

(15)

3 Experimental Methodology
We evaluate our models using the data production rates from “hero”
applications on the Jaguar machine at ORNL (Table 1.)

Our model is generic and applies to common supercomputer con-
figurations seen today. Our evaluation is driven by parameters from
the Cray XT5 Jaguar supercomputer [9], as shown in Table 2. In
the current SSD landscape, there is no support for active computa-
tion on the device. To study the viability of active flash, we model
after a contemporary SSD such as Samsung PM830, which has a
multi-core SSD controller based on the ARM processor [8]. Al-
though such a controller has three ARM-based cores, we adopt a
conservative approach, and propose to use only one core for active
computation, while leaving the other cores free for typical SSD ac-
tivities (e.g. error-checking, garbage collection etc.) In the future,
more cores are likely to be placed on the same chip, making active
computation more promising than what is projected in this study.

To emulate the computing speed of the ARM-based SSD con-
troller, we use an ARM Cortex-A9 processor in the Pandaboard
mobile software development platform [18]. We model the data
transfer times as follows. We assume 8 flash memory channels,
each with 40MB/s bandwidth, to transfer data from the NAND
Flash to the chip controller (BWfm2c) [12]. Our numbers are con-
servative, and modern devices usually have higher channel band-
width or more channels. Similarly, while the DDR2 SDRAM cache
used in these SSDs may have a bandwidth of up to 5.3GB/s [6], we
conservatively set BWc2m to 3.2GB/s.

For a comparison with the offline approach, we use two Intel
Core 2 Quad 6600 processor [5] as the offline data processing node.
We use an input file of 100MB to measure the analysis throughput.

The chosen data analytics kernels cover a wide variety of repre-
sentative analytics operations on scientific data, including pattern
matching, clustering, changing data layout, and compression [3, 4,

13]. We measured their processing throughput on both the ARM-
based SSD controller and the Intel server (Table 3.) Note that
the throughput of the analysis kernels may be input-dependent as
well (e.g. number of clusters, dimensions, search expressions etc.)
Therefore, choosing a wide variety of kernels, whose throughput
varies from less than one MB/s to a few GB/s helps better under-
stand the limits, and the potential of active Flash.

For energy calculations, we use the thermal design power (TDP),
105W, as the busy power for each offline Quad-core processor
(210W for the node.) Idle power is conservatively estimated as
one third of the TDP. These are optimistic power estimates, as we
do not account for the cooling cost of these offline nodes. Also,
we do not account for the power required for memory and network
traffic for the offline approach, which is clearly higher compared to
active flash, due to additional reading of the analysis data.

4 Evaluation
Our evaluation aims to answer three questions: (1) What is the stag-
ing ratio for SSD provisioning, based on the capacity and band-
width constraints? (2) Is the staging ratio sufficient to support in-
situ data processing on the SSDs? (3) If so, what is the energy
saving with active flash?

CHIMERA VULCAN POP S3D GTC GYRO
Scapacity(16GB) 1 1285 117 9 3 83
Scapacity(32GB) 1 2571 233 18 6 166
Scapacity(64GB) 1 4500 461 36 12 333
Sbandwidth 54 54 54 54 54 54

Table 4: Staging ratio is derived from capacity and bandwidth provi-
sioning. More restrictive estimate denoted in the bold.

Table 4 shows the staging ratio based on both capacity and com-
pute node-to-SSD bandwidth constraints given in Equations 1 and
2. The grey cell with bold font indicate the final ratio selected (the
most restrictive one). For our target machine, Jaguar, Sbandwidth
is an application independent constant of 54, while Scapacity obvi-
ously varies with different applications’ data generation rates. In-
terestingly, the bandwidth constraint is more restrictive for one half
of the applications, while the capacity constraint for the other half.
This suggests that both factors need to be carefully examined when
provisioning active flash devices.

Next, we identify the analysis kernels that can be run on SSDs
for a given application, as we vary the staging ratio. Recall that
Sbandwidth is constant across applications, so we consider multiple
staging ratios below it. Figure 3 shows the analysis kernels’ com-
pute throughput (measured on our ARM testbed) as flat horizon-
tal lines and the application throughput requirement as slope lines
with dots. A data analysis kernel is able to run on the SSD with
no simulation performance penalty, if its computational throughput
is higher than the required computational throughput of the appli-
cation (TSSD k in Equation 7.) As the staging ratio increases, the
threshold throughput of the application also increases.

For example, all of the data analysis kernels can be run on the
SSD for the fusion application S3D, when the staging ratio is 5,
as all the horizontal lines are above the S3D dot, with x = 5. A
staging ratio of 5 means that for every five compute nodes, there is
one SSD deployed. In our target setting of 18,000 compute nodes,
this amounts to 3,600 SSDs. As we increase the staging ratio to 50,
the ”gzip, fingerprinting, and kmeans” kernels cannot be run on the
SSD as the threshold throughput of S3D is higher than the compute
throughput of these kernels. Figure 3 reveals that even a staging
ratio as high as 50 can accommodate all the data analysis kernels
for most of the applications, with the exception of CHIMERA and
S3D (the most data-intensive.)

4

0.01

0.12

1.48

18.10

220.50

2687.00

5 10 25 50

C
o

m
p

u
te

 T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Staging Ratio

Mean
Grep
Transpose
PCA
Gzip
Fingerprinting
Kmeans
CHIMERA
VULCUN
POP
S3D
GTC
GRYRO

Figure 3: Feasibility of running analysis kernels on the SSD using
different staging ratios. A kernel line higher than a dot point on the
application’s slope line is suitable for active flash.

Figure 4 plots the energy expense in running data analysis us-
ing both active flash and offline strategies. Based on Figure 3, we
choose a staging ratio of 10, which seems to serve all the appli-
cations well, except CHIMERA, which cannot run any of the ker-
nels with this staging ratio. To support a staging ratio of 10, we
will need to provision 1800 SSDs, each with 64GB of capacity,
due to the most restrictive application, GTC (Table 4.) We define
baselinePFS (y = 0) as just running the simulation job without
SSDs: all checkpoint and output data are written to the PFS. In
baselinePFS , no further data analysis is performed after the simu-
lation run. A negative number indicates the energy saving achieved
when compared against baselinePFS . We observe that deploying
SSDs just for higher I/O throughput, in and of itself (baselineSSD ,
shown as the dotted horizontal line in Figure 4), saves significant
energy due to the shortening of the overall application run time.

It is no surprise that active analysis on the SSDs consume extra
energy compared to baselineSSD . However, what is interesting is
that it still results in savings compared to baselinePFS , for almost
all applications and data analysis kernels, except for VULCUN (as
it does little I/O, there is no benefit due to SSDs.) In contrast, the
offline approach consumes more energy due to the I/O wait time on
the offline compute nodes. For example, for S3D with fingerprint-
ing, we observe up to 1137 kWh of energy savings per simulation
run compared to the offline processing as it produces significant
analysis data. Overall, active flash makes data analysis virtually
“free” in most cases when it is piggybacked on the SSDs, promis-
ing significant energy and performance savings compared to the of-
fline approach. However, as noted earlier, active flash is not always
feasible for all application data production rates (e.g., CHIMERA
and S3D with kmeans), which would require a substantially higher
SSD provisioning configuration.

5 Conclusion and Future Work
Based on our evaluation, we conclude that piggybacking data anal-
ysis on SSDs is feasible in terms of both capacity and performance,
for representative large-scale parallel simulations. Further, the ad-
ditional energy spent on data analysis is small compared to the
energy savings due to staging data through the SSDs, which also
avoids the significant energy cost involved in the offline approach.
An interesting angle to pursue is if “such energy savings can pay
for the infrastructure cost of the SSDs?” This, however, requires
a careful estimation of the lifetime of SSDs in our target scenario,
considering factors such as I/O access patterns and the specific de-
vice model. We plan to investigate this in our future work.

6 Acknowledgments
This work was sponsored partially by ORNL, managed by UT
Battelle, LLC for the U.S. DOE (Contract No. DE-AC05-
00OR22725.), and partially through NSF awards CNS-0915861
and CCF-0937690, an IBM Faculty Award, and Xiaosong Ma’s

-10

0

10

20

Mean Grep Transpose PCA Gzip Fingerprinting Kmeans

Application: VULCUN

E
n
e
rg

y
 E

x
p

e
n
s
e
 (
k
W

h
)

Active Flash Offline Approach

-75

0

75

150

Mean Grep Transpose PCA Gzip Fingerprinting Kmeans

Application: POP

E
n
e
rg

y
 E

x
p

e
n
s
e
 (
k
W

h
)

Active Flash Offline Approach

-600

450

1500

Mean Grep Transpose PCA Gzip Fingerprinting Kmeans

Application: S3D

E
n
e
rg

y
 E

x
p

e
n
s
e
 (
k
W

h
)

Active Flash Offline Approach

-1000

-500

0

500

1000

Mean Grep Transpose PCA Gzip Fingerprinting Kmeans

Application: GTC

E
n
e
rg

y
 E

x
p

e
n
s
e
 (
k
W

h
)

Active Flash Offline Approach

-100

0

100

200

Mean Grep Transpose PCA Gzip Fingerprinting Kmeans

Application: GYRO

E
n
e
rg

y
 E

x
p

e
n
s
e
 (
k
W

h
)

Active Flash Offline Approach

Figure 4: Comparing the energy expenses of all applications for Ac-
tive Flash and offline approach. Expenses are w.r.t. running only the
simulation job using PFS, without SSDs (baselinePFS .) Dotted line
denotes energy savings due to running only simulation using SSDs
without active computation (baselineSSD .)

joint appointment between NCSU and ORNL.

7 References

[1] Computational science requirements for leadership computing, 2007,
http://tinyurl.com/nccs2007.

[2] Exascale computing study: Technology challenges in achieving exascale
systems, peter kogge, editor and study lead, 2008.

[3] Gnu grep, http://www.gnu.org/software/grep/.
[4] Gnu zip, http://www.gzip.org/.
[5] Intel core2 quad processors , http://tinyurl.com/q6600core.
[6] Micron dram datasheet , http://tinyurl.com/drambw.
[7] Preparing for exascale: Ornl leadership computing facility application

requirements and strategy, 2009, http://tinyurl.com/nccs2009.
[8] Samsung pm830 datasheet, http://tinyurl.com/co9zyq7.
[9] National Center for Computational Sciences. http://www.nccs.gov/, 2008.

[10] Acharya et al. Active disks: programming model, algorithms and evaluation. In
ASPLOS, 1998.

[11] Boboila et al. Active flash: Performance-energy tradeoffs for out-of-core
processing on non-volatile memory devices. In MSST, 2012.

[12] Kim et al. Fast, Energy Efficient Scan inside Flash Memory Solid-State Drives.
In the International Workshop on Accelerating Data Management Systems
(ADMS) with VLDB, 2011.

[13] Ranger et al. Evaluating mapreduce for multi-core and multiprocessor systems.
In HPCA, 2007.

[14] Riedel et al. Active storage for large scale data mining and multimedia
applications. In VLDB, 1998.

[15] Zheng et al. Predata - preparatory data analytics on peta-scale machines. In
IPDPS, 2010.

[16] Michael L. Norman and Allan Snavely. Accelerating Data-intensive Science
with Gordon and Dash. In TG’10.

[17] U.S. Department of Energy. DOE exascale initiative technical roadmap,
December 2009.

5

http://extremecomputing.labworks.org/hardware/collaboration/EI-
RoadMapV21-SanDiego.pdf.

[18] The Pandaboard Development System. http://pandaboard.org/.
[19] Top500 supercomputer sites. http://www.top500.org/.

6

